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Second-harmonic generation and ferromagnetic resonance have been investigated in spheres
of yttrium iron garnet (YIG) as a function of incident power above the threshold for excitation
of z-directed spin waves by the second-order Suhl instability. The fundamental frequency
was 8.42 GHz and the temperature 300 °K. The second-harmonic power output P,, has the
following features above threshold: (a) P,, goes through a minimum and then 2 maximum as
a function of incident power; (b) the line profile of P,, versus dc field H shows two and then
three peaks; (c) sufficiently far above threshold, P,, initially increases after the pulse of
incident power is turned off. None of these effects is correlated with unusual behavior of the
transverse magnetization, which always increases with power above threshold, has a single
resonance line, and begins to decay as soon as incident power is turned off. The results are
explained in terms of parametric coupling between the initially excited z-directed spin waves
and other spin waves, with explicit account taken of the ensuing phase relations. These tend
to make the other spin waves interfere destructively with the uniform mode (2=0) in their
contribution to P,,. In this way, quantitative agreement between theory and experiment is
obtained with reasonable values for two adjustable parameters. Coherent phase relations be-

tween the interacting spin waves are essential for an understanding of the results. If all 2= 0
magnon interactions are lumped into effective relaxation rates, it is possible to explain the
transverse resonance data, but not the second-harmonic effects.

1. INTRODUCTION

Since the explanation by Suhl! of the premature
saturation of ferromagnetic resonance observed
by Bloembergen and Wang,? it has been known that
spin waves of nonzero wave vector are excited in
conventional (transverse pumping) ferromagnetic
resonance experiments. This excitation occurs
through parametric coupling of the uniforn& mode
to a pair of spin waves with wave vectors k and

—k. When the uniform mode reaches a critical
amplitude determined by the coupling strength and
spin-wave relaxation rate, the pair k and -k is
excited to a very large amplitude. Further growth
of the uniform mode amplitude is inhibited, thus
causing the observed saturation.

In its original and most elementary form, theory
predicts the uniform-mode amplitude to stay con-
stant above threshold which results in the rf sus-
ceptibility declining as 1/k, where h is the driv-
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FIG. 1. (a) First-order Suhl process. A uniform

mode (2=0) magnon is destroyed and a pair E, ~%of
nonzero wave-vector magnons is created. Conservation
of energy requires w,=3w,, and this is possible in a YIG
sphere at room temperature on resonance only for wy/
2m>3.3 GHz. (b) Second-order Suhl process. Two_uni-
form-mode magnons are destroyed and a pair k % of
nonzero wave-vector magnons is created with w,=w,.

It is always possible to satisfy this condition on reso-
nance.

ing field amplitude. This has been verified!'3:*
for the first-order Suhl process, which is illus-
trated in Fig. 1(a). For the second-order Suhl
process, shown in Fig. 1(b), however, the sus-
ceptibility falls off more slowly than 1/4. Such
behavior occurs® even in highly pure, highly pol-
ished samples of yttrium iron garnet (YIG) where
two-magnon scattering is not overly important.®

In this paper we report experiments on both the
uniform mode and second-harmonic generation in
a single-crystal YIG sphere above the second Suhl
threshold. The results are interpreted as show-
ing that the originally excited spin waves k -k
grow to sufficiently large amplitude that they ex-
cite other spin waves by parametric coupling, as
illustrated in Fig. 2. Striking effects on the sec-
ond-harmonic power output — both steady state and
transient — and second-harmonic line shape are
explained in terms of coherent phase relations
between these other spin waves and the original
ones.

That spin waves other than the first ones to go
unstable can be excited is certainly no surprise.
The noteworthy feature of our results is the im-
portance of phase relations among the various spin
waves. Such phase coherences are not required in
order to explain the behavior of ferromagneticres-
onance, but they play a dominant role in harmonic
generation,

In order to discuss the effects of coherent and
incoherent phases (and precisely what we mean by
these terms), consider some of the basic equations
involving the second Suhl threshold and harmonic
generation. {Weassume throughout that the first
Suhl process [Fig. 1(a)] is forbidden, which is the
case in our experiments on YIG at X band.} The
k #0 spin-wave amplitude c, satisfies the equation
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Cp=—1iw,Cy—iggpcict +(other terms) , (1)

where w, is the spin-wave frequency and g, , is the
coupling constant for destruction of two unifor_In
mode (% =0) magnons and creation of the pair k,
-k [Fig. 1(b)]. The second term in (1) is recog-
nized as arising from the Hamiltonian appropriate
to Fig. 1(b):

3¢ (Suhl second order) =g cc,c., +Hoc., (2)

where H.c. stands for “Hermitian conjugate” and
the ¢’s and cs are treated as boson annihilation
and creation operators, respectively. The “other
terms” in (1) describe all other scattering process-
es in which the mode K is involved. These may
include coupling with phonons as well as with other
k+0 magnons. A common assumption is to say
that the only important effects of these other terms
are to produce a frequency shift and finite lifetime.
Thus (1) is approximated by

¢y =i0yCy—N4ch—i8mCoCh &)
where @, is the shifted frequency and 7, is the re-
laxation rate. The standard assumptions required
for the validity of rate equations must be employed
in going from (1) to (3). These include random
phases among the interacting spin waves and small-
ness of all 2+#0 spin-wave amplitudes compared to
the one in question. When we say that £ +#0 spin
waves have “incoherent phase relations” we hence-
forth mean that Eq. (3) is satisfied for all spin
waves excited to appreciable amplitude. This term
will be further clarified momentarily.

Solutions of (3) and a similar equation for éJ,
show! "8 that c, grows exponentially for go,lcyl?
>17,, assuming w,=w,. Steady-state conditions
require, for lc,|%#0,

leol?=m/g0e (4)

which leads to the result that the uniform-mode
amplitude remains constant above threshold. An-
other useful steady-state relation is

-k

/

-k
K

FIG. 2. Destruction of the magnons E -k created by
the Suhl second-order process. For sufficiently large
amplitudes of k and - k the pair can break up into
another pair ik’ —k by the same type of mechanism
which limits the uniform mode [Fig. 1(b)].
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c,’;c_i z’i(go,:/’?k)cfg ‘Ck Ia (5)
for lc,|?#0. Thus there is a coherent phase re-
lation between the magnons k and -k . Thisresults
from the fact that k and — k are excited at the same
time by the destruction of uniform-mode magnons.

Instead of saying that (3) implies incoherent
phases, one could more properly state that the
phases of k and -k are related by (5). That is,
all excited spin-wave pairs have phases such that
they absorb energy from the uniform mode. How-
ever, as seen, this does imply that interactions
among k2 #0 spin waves may be treated by effective
relaxation rates without worrying about the relative
phases of k and k’ when k’ is excited by scattering
from k.

It is not difficult to account for |cy|° increasing
above threshold within the framework of (4). As
the initially excited spin waves grow in amplitude
and the temperature of the magnon system increas-
es, it is reasonable that the relaxation rate 7, will
increase. This allows lcyl? to increase according
to (4). Schlomann® has used this same reasoning
to discuss parallel-pump susceptibilities. It ap-
pears to work quite well in describing the trans-
verse resonance susceptibility when the Suhl sec-
ond-order process is operative, as we show in
Sec. IVA. One might then ask why lc,!? does
remain constant above threshold for the first-order
process. The Appendix is devoted to this question.

The above gives justification for the earlier
statement that it is not necessary to consider phase
relations among the excited spin waves for a de-
scription of the resonance susceptibility. These re-
lations, however, are important to harmonic gen-
eration, as we now show.

The z component of magnetization, where z is
the equilibrium direction, varies at a frequency
2w if the transverse magnetization precesses in
an elliptical path at frequency w. With suitable
microwave circuitry, this time variation can be
detected in the form of second-harmonic power
radiated from the sample. Ayres, Vartanian, and
Melchor!® first observed harmonic generation from
the uniform mode. Richards and Shaw'! later
showed that 2 #0 spin waves also contribute to har-
monic generation.

The pertinent equations for describing second-
harmonic generation are as follows:

, (6)
) (M

IZ

M,=M, —Yh—Ekagak

- t
Ap=ApCp = Hp Cop

Cp= Eke -twt y (83.)
cl=elelvt | (8b)
Ma(zw)=7’7i2k7\kuk5;6f,, . (9)
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In the above, M, is the total z component of mag-
netization, a] and a, are the spin-deviation creation
and annihilation operators, respectively, as de-
fined by Holstein and Primakoff, 12 M, is the satu-
ration magnetization at 0°K, and y is the magni-
tude of the electronic-gyromagnetic ratio. The
spin-deviation operators are related to the mag-
non operators ¢, and c!, by the Holstein-Prima-
koff transformation'®!® whose parameters A, and
KLy are given by

A= =1, (10)

Mebdy, = 4/ 4wp)sin®6,e %%+ B,/ 2w, (11a)
for k#0,
and Myuo=B,/ 2w, (11p)

for k=0 and a sample with equal transverse de-
magnetizing factors. Here wy,=4myM,, 6, and ¢,
are polar and azimuthal angles, respectively, de-
scribing the direction of ﬁ, and B, is a contribution
due to single-ion anisotropy. For cubic symmetry,
B,=0 if the sample is magnetized along a (100) or
(111) direction and B, = (3yK,/4M,) if magnetized

in a (110) direction, where K, is the first-order
cubic anisotropy constant. It is important to note
that B, is independent of K for single-ion anisotro-
py.

That spin-deviation and magnon operators are
not one and the same, i.e., p,#0, results from
terms in the dipolar and anisotropy Hamiltonians
which do not commute with M,. This also gives
rise to time variation of M,, expressed by M,(2w),
which is that part of M, which varies as e2!“!, By
referring to ¢, and c; as magnon operators, we
mean that the part of the total Hamiltonian which
is quadratic in the spin-deviation operators 3®
may be reduced to

&(2)=Ekh'wkc,!ck (12)

upon application of the Holstein-Primakoff trans-
formation. It has been assumed in (8) that all ex-
cited spin waves are driven at the frequency w.
This implies resonance of the uniform mode under
influence of a driving field at wand excitation of
spin waves by couplings such that w,=w,, as for
the second-order Suhl process.

If the magnitudes and phases of the excited spin
waves are independent of azimuthal angle ¢, and,
as corresponds to our experiments, the sample
has equal transverse demagnetizing factors and is
magnetized in a direction such that B,#0, then the
dipolar contribution to A,u, does not survive the
summation in (9) and we are left with

M,(Zw) =

KB,/
E “(c*oa+2 a;:a.;) , (13)
We B#0
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a form which will be assumed throughout.

In (13) the 2 #0 and uniform-mode contributions
have been separated for convenience. Suppose now
that phase relations are assumed as in (5). Then
(13) becomes

M,(2w)= 1’%’- et [1+zZ) (n) |ck'] . (1)

R#0

Now’ gq is real for all K. It follows that the spin-
wave contribution to second-harmonic power out-
put, which is proportional to |M,(2w) |2, is simply
additive.

Thus the assumption (5) of incoherent phase re-
lations (as defined earlier) leads to a very definite
prediction: The total second-harmonic power out-
put P,, above threshold must be greater than or
equal to that due to the uniform mode alone. Since
the uniform-mode amplitude is found to increase
above threshold, we may also state that P,, must
increase above threshold. Our results show con-
clusively that this is nof the case. P,, goes
through a minimum above threshold, and at this
minimum it is from 2 to 5 times less than P, at
threshold and from 12 to 30 times less than would
be expected from the uniform mode contribution
alone. (The varying numbers reflect differences
in crystal orientation. )

Better accounting of the spin-wave phases is
required to explain our results. Section IV gives
a detailed treatment, but the qualitative features
which provide agreement with experiment may be
discussed here. Let K and —K be the first spin-
wave pair to acquire large amplitude due to the
Suhl process. When their amplitude becomes suf-
ficiently large, they can excite another pair k",
-k’ by the same type parametric coupling. This
is shown in Fig. 2. Assume for simplicity that
Zo =0 so that this new pair absorbs energy from
the pair K, —K alone. The phases &%, &,4, and
C,' ¢ are displayed in the diagram of Fig. 3. We
have assumed g, and g, to be real and positive,
which is the case for spin waves of interest. !*

The phase of ¢ ¢}, is given by an equation analo-
gous to (5):

cktc-;"_'i(gkk’/nk')c;c-zz|ck"2 . (15)

The important thing to observe in Fig. 3 is that
CpCoy is 180° out of phase with cj and thus, from
(138), destructively interferes with the uniform
mode’s contribution to P,,. In this way P,, can
decrease above threshold for excitation of the sec-
ond pair ¥, -K'.

The fact that parametric processes occur be-
tween pairs of £ #0 spin waves as well as between
a given 2 #0 pair and the uniform mode has been
ignored in the incoherent phase equation (3) which

v
chcl

FIG. 3. Phasor diagram for umform mode and ex-
cited spin waves. The pair k -—k is excﬂ;ed by the pro-
cess in Fig. 1(b), and the pair k', -1 by the process in
Fig. 2. Coupling between k’ and the uniform mode is
neglected.

lumps all interactions not involving £=0 into an
effective relaxation rate and frequency shift. When
the phase relations such as (15) demanded by para-
metric excitation are included it is possible to
explain the striking harmonic generation effects to
be described in Sec. III. These include sudden
increase of P,, upon switching off the pulse of in-
cident power and two or three peaks in the second-
harmonic line profile, as well as the above-men-
tioned minimum in Py, .

II. EXPERIMENTAL DETAILS
A. Samples

Experiments were performed at room tempera-
ture on highly polished single-crystal YIG spheres
between 0.5 and 1.3 mm in diameter supplied by
Airtron, Inc. These were found to have an intrinsic
linewidth A H, of about 0.4 Oe at a fundamental
frequency w/2m=8.42 GHz. (AH, is the full width
of the absorption curve at half-maximum in the
limit of no radiation damping by the waveguide
fields.) Detailed results to be presented here are
for the largest, 1.3-mm-diam, sphere. Similar
results were obtained for smaller samples although
weaker-harmonic signals limited accuracy.

The sample was mounted on a quartz rod so that
its (111) direction was approximately along the axis
of the rod. This was accomplished by letting the
sample rotate freely on a horizontal magnet pole
face so that the easy (111) axis is vertical in equi-
librium. It was then glued to a quartz rod with this
position maintained. X-ray analysis later showed
the sample to be orientated with its (111) direction
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at an angle of 4°+3° from the rod axis. With the
rod perpendicular to the dc field Hy, it was then
possible by rotating the rod to vary approximately
the direction of ﬁo in the (111) plane.

B. Microwave Circuitry

Power at the fundamental frequency w/27=8.42
GHz was furnished by a 20-W Varian VA-617G cw
travelling wave tube (TWT). The TWT was driven
by an X-13B reflex klystron whose output was
modulated by a Philco diode switch. The diode was
pulsed on by a Hewlett-Packard 212A pulser which
has a rise time of 20 nsec. Because of the non-
linear character of the diode switch, the resulting
pulses of microwave power had rise and fall times
of 5 nsec.

A low-pass filter cut off at 12 GHz was placed
in front of the TWT in order to prevent harmonics
generated by the TWT from being detected.

The microwave circuit at the fundamental fre-
quency is simply a shorted waveguide. But at the
second-harmonic frequency it is a cavity resonant
at 2w/27=16. 84 GHz with a loaded @ of about 2500.
A cavity is not necessary at the fundamental be-
cause of the strength of the YIG transverse res-
onance. It is required at the second harmonic,
though, in order to increase the level of radiated
power to a conveniently detectable level. This
circuitry is accomplished by the geometry shown
in Fig. 4. X-band and Ku-band waveguides are
cross coupled by a circular iris. The Ku-band
guide acts as a short circuit to the fundamental
fields while allowing second-harmonic energy to
propagate through the iris. A reduced height sec-
tion which is cut off to the TE,; mode below 22 GHz
is placed at the input end of the X-band guide. The

Reduced

Height 2

Section
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space between the reduced height section and the
iris then forms a TE,;, cavity which can be made
to resonate at 2w by proper adjustment of the sap-
phire tuning stub. The TE;; mode in which funda-
mental energy propagates is not significantly af-
fected by the reduced height section [measured
voltage standing-wave ratio (VSWR) was less than
1.1].

The sample is placed in the center of the cavity
(whichis 32, from the effective short for the funda-
mental) as shown. In this position M,(2w) couples
optimally to 7,(2w) of the TE;;, mode, and the uni-
form mode is excited by %,(w) of the TE,, mode.

C. Detection

Resonance at the fundamental frequency is de-
tected by two methods. First, the standard tech-
nique of monitoring the reflected power is used.
Second, the precessing transverse magnetization
M,(w) is detected by a coupling loop in the x-z
plane as shown in Fig. 4. The loop is particularly
useful for transient measurements of the trans-
verse magnetization since it responds only to fields
generated by M, . Steady-state measurements re-
ported here were taken by the reflection method
while transient data are from the loop.

The second-harmonic power on threshold radi-
ated into the Ku -band guide is of the order of 107°
mW = - 50 dBm (dB above 1 mW) for the cavity de-
scribed above. This agrees well with the calcu-
lated value.!* Since transient as well as steady-
state measurements of P,, were performed, we had
to balance sensitivity with bandwidth in designing
a detection scheme. The most satisfactory ar-
rangement with available equipment proved to be
superheterodyne detection and video amplification

FIG. 4. Second-harmonic cavity

and details of sample position, rf
< fields, waveguide coupling, and cou-
pling loop for detection of transverse
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for most of the measurements. An X-12 klystron
was used as a local oscillator, and the i.f. fre-
quency was 80 MHz. The i.f. envelope was am-

plified with a Hewlett-Packard 462A video amplifier

and displayed directly on the face of a Tektronix
581A oscilloscope. In this way powers of — 60
dBm could be detected. Straight video detection
could be used at higher powers where sensitivity
was not an overriding factor.

The cavity @ limited the response time to 50
nsec. For some measurements it was necessary
to look at shorter-time responses. Here we re-
moved the iris, thereby reducing the loaded @ to
about 300 and cavity ring time to about 5 nsec.
(A cavity remained at 2w because of the disconti-
nuity between X- and Ky -band guides.)

D. Measurement of Second-Harmonic Phase

Phase of the second-harmonic signal was mea-
sured by the following method, shown in Fig. 5.
Some (- 20dB) of the incident fundamental power
is fedinto a crystal diode which is used as a har-
monic generator. The second harmonic produced
in this way has a constant phase with respect to
the incident fields at w and hence with respect to
the uniform mode if resonance conditions are
maintained. It is then mixed with the second har-
monic generated from the sample. One can mea-
sure how the phase of the 2w signal generated from
the sample varies with power by observing the
amount of phase shift which has to be introduced
by the precision phase shifter in order to mini-
mize the detected signal. He must, of course,
not make any adjustments of attenuators beyond
the coupler in Fig. 5, nor do anything else to
introduce an extra phase shift as the power is in-
creased. Also, the phase difference between w
incident upon and 2w generated from the diode
must not depend on power level. This was checked
and found to be the case.

E. Coupling of Sample to Waveguide Fields

Parameters are measured as a function of rf
driving field 7z at the fundamental frequency. As
used throughout, 7 is the field which exists in the
sample. It is related to %, the waveguide field in
the absence of the sample, on magnetic resonance
by4,14

h=ho/(1+8) , (16)
where B is the sample coupling coefficient
B=1672V, X''/\.ab 17)

for the sample located as in Fig. 4 where V; is the
sample volume, A, is the guide wavelength, ab is
the waveguide cross section, and x’’is the imag-
inary part of the rf susceptibility on resonance.

Experimentally, B is measured as

B = 7 , overcoupled sample
=1/7, undercoupled sample, (18)

where 7 is the VSWR on resonance, it being as-
sumed the fundamental frequency microwave cir-
cuit is a shorted waveguide so that » - © well off
resonance. Distinction between overcoupled and
undercoupled can readily be made by microwave
techniques. 15

The 1.3-mm-diam sphere was overcoupled with
B=9. Such strong coupling, even without a cavity,
is typical for YIG. The large value of g has two
important consequences. First, 1% is not propor-
tional to incident power above threshold since x "’
is power dependent in this region. Second, there
is a sizable radiation-damping contribution to
linewidth. Analysis* shows that

AHLzAHR"' AHO=AH0(1+B) , (19)

where AH;, the loaded linewidth, is what is ob-
served experimentally, AHy is the radiation
damping contribution to linewidth, and AH, is the
previously defined intrinsic linewidth., From mea-
surement of AH; and VSWR on resonance, (18)
and (19) can be used to determine AH,.

Transient decay of the uniform mode occurs at
a rate yAH which, for the 1. 3-mm sample, is
10 times faster than the intrinsic decay rate yAH,.
Spin waves decay at their intrinsic rates, however,
since 2 +#0 modes do not couple to transverse
driving fields. This feature enables us to study
the 2 #0 contribution to second harmonic by ob-
serving the decay rate of M,(2w), since for times
much greater than (yAH ;)™ it is dominated by
k #0 spin waves.

Coupling of M ,(2w) to the second-harmonic cav-

HGIHX-KupH ¢ =

&) @

f IHG2 | —— —
ZOdB US| LT 2w
Detection

FIG. 5. Microwave circuitry for measurement of
second-harmonic phase. The solid lines indicate the
X-band waveguide and the thick and thin lines, the Ku-
band waveguide; R is the variable attenuator; the arrow
is the isolator; the circle with an arrow is precision
phase shifter; X-Ku is the X-band to Ku-band transi-
tion; H.G.1 is the diode harmonic generator; H.G.2 is
the YIG sample harmonic generator; 20 dB is the 20-dB
directional coupler. X-band components related to
coupling fundamental power P;, into sample and detec-
tion of reflected power are not shown.
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IM,(«)I® (@B)
D

@)

K (dB)

FIG. 6. Square of transverse magnetization |M,(w)|?
versus square of driving field at sample %%, Suhl thresh-
old occurs at 0 dB, which corresponds to 2=6.5X1073
Oe. The solid curve is Eq. (30) with C'=%. The dashed
curve shows behavior for inhomogeneity scattering.

ity fields can, in principle, lead to radiation
damping of the uniform and 2 #0 modes. But for
the low efficiency of harmonic generation reported
here, this effect is completely negligible.

III. RESULTS
A. Uniform-Mode Resonance

Figure 6 shows transverse magnetization
IM (w)!| versus fundamental rf field 2. Threshold
is clearly recognized, as is the fact that [M (w)!
increases above threshold. The critical field is
he=6.5%10" Oe, and the intrinsic linewidth is
AHy=0.38 Oe. From the relation'”

ho= AHo(AH,/4nM)M2, (20)

we obtain AH,=0.51 Oe as the full linewidth of the
z-directed spin wave, which is the first to go un-

D. BIERLEIN AND P. M. RICHARDS 1

stable since it has the maximum coupling g¢,. In
(20), 47M =1750 G is the saturation magnetization
of YIG at room temperature.

Above threshold the dc field H, required for
resonance, changes with power level, as observed
by Matcovich et al.'® Data were taken with H ad-
justed to give resonance at each power level. The
solid curve in Fig. 6 is theoretical and is dis-
cussed in Sec. IVA, The dashed curve shows the
expected behavior when two magnon-scattering
processes are included® but nonlinear processes
between % #0 spin waves are ignored. Both the
general shape of the curve above threshold and
the value of AH, agree closely with previous mea-
surements.® Linewidths and behavior of |M,(w)]
above threshold are insensitive to orientation of H
in the (111) plane, although the value of H required
for resonance does vary in a manner well corre-
lated with theory.

Relaxation oscillations'” occur for 12 greater
than 16 dB above threshold and prevent meaningful
measurements from being taken.

B. Second-Harmonic Power Output

Second-harmonic power output P,, is shown as
a function of & in Fig. 7 for three different orien-
tations of H approximately in the (111) plane.
Powers are normalized to the values at threshold.
Below threshold the absolute value of P,, varies
with angle in a manner which agrees with the the-
oretical variation of B, (13) in the (111) plane. *
This is such that P, is a maximum with H in the
[110] direction and is a minimum with H at an an-
gle of 30° with respect to [110]. The ratio be-
tween maximum and minimum P,, is about 9.

The dashed curve represents the expected P,,

FIG. 7. Normalized second-
harmonic power output versus
square of driving field. 0 dB
corresponds to threshold. The
circles indicate H along [110];
the squares, H 10° from [110]
approximately in (111) plane;
the triangles, H 20° from [110]
approximately in (111) plane.
The dashed curve is Py, « | M,
X (w) |* which represents con-
tribution from uniform mode
alone. The solid curve
through A data is Eq. (42) with
a and v given by Fig. 11.
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FIG. 8. Phase of second _llarmonic versus square of
driving field. Data are for H 20° from [110] approxi-
mately in (111) plane, corresponding to A points of Fig.
7. The solid curve is obtained from Eq. (42) with @ and
v given by Fig. 11.

due to the uniform mode alone. This is given by
Py (k=0)cc [84] o M (w)*

as follows from (13). Above threshold, the total
P, is considerably less than the 2 =0 contribution,
in marked disagreement with the picture (5), (15)
in which all excited spin waves have phases such
that they absorb power directly from the uniform
mode.

ANRLWAN
VANPRA
PAVAYATA\
VACTYAVVAN

/ﬂ\ﬁN M

-15 H, 150e -15 H, 150e

FIG. 9. Second-harmonic power versus dc field H.
Orientation of H is the same as for A points of Fig. 7.
Numbers in dB refer to the level of %% above threshold.
Curves on the left are experimental. Curves on the right
are theoretical as explained in Sec. IV C. Transverse
magnetization gives a single resonance line at all power
levels centered at Hy. (The value of H; does change with
power level, and the width of the resonance curve in-
creases with power.)

HARMONIC GENERATION AND PARAMETRICALLY... 4349

C. Second-Harmonic Phase

Phase of the second harmonic M ,(2w) is shown
in Fig. 8 for one crystal orientation. If we let

M (2w)=¢R%F(2w) , (21)
then the phase angle & is given by
tan®d, = ImF(2w)/ReF (2w) (22)

where Im and Re stand for imaginary and real
parts, respectively. Since the dc field is adjusted
to keep the uniform mode on resonance, the phase
of &} is constant with respect to the incident driv-
ing field. This, together with the fact that the
phase of the second-harmonic cavity field is con-
stant with respect to M,(2w), enables &, to be mea-
sured by the method discussed in Sec. IIC.

Note that &, exceeds 90° for a range of powers

above threshold. This is incompatible with Eq.
(15) if

Z; (go’t/ﬂk)lcklz>0 .
k#0

Examination of g, shows that this certainly should
be the case” since Igg,! is very small for go, <0
and thus there should be relatively few spin waves
excited with g¢, <0. Hence both the phase-shift
and P,, data refute the predictions based on inco-
herent phase relations among % #0 spin waves.

FIG. 10. Second-harmonic and transverse magnetiza-
tion pulse shapes (a) 6 dB above threshold, 1 psec/cm;
(b) 9.6 dB above threshold, 1 usec/cm; (c) 14 dB above
threshold, 1 psec/cm; (d) 8 dB above threshold, 50
nsec/cm. In (a)—(c) the upper trace is second-harmonic
(if envelope) and the lower trace transverse magnetiza-
tion. In (d) the lower trace is second-harmonic (straight
video detection) and the upper trace transverse mag-
netization.
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The solid curve in Fig. 8 is theoretical and is
explained in Sec. IV B.

D. Second-Harmonic Line Profile

Dependence of P,, upon applied field H has par-
ticularly interesting features as seen in Fig. 9.
Below threshold, a single peak appears at the field
required for resonance H,. In the region between
threshold and the minimum in P,,, two peaks are
seen with a minimum occurring at Hy,. As % is in-
creased above the point where P,, has a minimum,
three peaks appear with the one at H, growing rel-
ative to the other two. Over the whole range,
however, the uniform-mode resonance gives only
a single line. Theoretical curves are shown
alongside the experimental ones. These are dis-
cussed in Sec. IVC.

E. Pulse Shapes

In Fig. 10 we present a series of fundamental
and second-harmonic pulse shapes observed be-
tween 6 and 14 dB above threshold for ﬁo along
(110). Other crystal orientations give similar
results. Below threshold the pulse shapes are
essentially square on the 1-usec/cm scale. The
fundamental pulses record |M,(w)|? as detected
with the pickup loop (Sec. IIC).

The transverse magnetization has an initial
spike above threshold, but no other unusual fea-
tures. The second-harmonic pulse, however, has
additional peculiarities besides the initial spike.
For h® greater than about 10dB above threshold,
P,, shows an initial increase after the pulse of
incident power is turned off. At about 12 dB above
threshold P,, develops a second peak after the ini-
tial spike. Results quoted in Secs. IIB and IID
referred to the steady-state portion of the Py,
pulse after the second peak has decayed out.

The traces in Figs. 10(a)-10(c) were taken with
@z =2500 for the loaded @ of the second-harmonic
cavity. InFig. 10(d) the loaded @ was reduced to
about 300 so that the initial decline in P,, could
be observed. This effect is masked with the larg-
er @ since it occurs in a time shorter than the
response time for @ =2500.

Theoretical curves are presented in Sec. IVD
which reproduce qualitative aspects of those shown
here.

F. Relaxation Rate of Spin Waves from P,

Since the uniform mode decays very rapidly
(decay time = 15nsec) because of radiation damp-
ing the long-time trailing edge of the P,, pulse is
assumed to be due to 2 #0 spin waves. Its long-
time decay constant gives a measure of the relax-
ation rate of spin waves which contribute to second

harmonic. We find this rate corresponds to AH,
=0.63 Oe approximately independent of power lev-
el for h? greater than 9. 6dB above threshold. At
lower powers, the signals were too weak for mean-
ingful measurement to be performed. This value
of AH, is close to the figure 0. 51 Oe obtained from
the critical rf field (Sec. IITIA).

Time bases as shown in Fig. 10(d) were used
for these measurements.

IV. THEORY AND INTERPRETATION OF RESULTS

We show in this section that the peculiarities
associated with second-harmonic generation can
be explained at least qualitatively by accounting
for parametric coupling among % #0 spin waves and
the ensuing phase relations. The behavior of
transverse magnetization above threshold can,
however, be reproduced by a simpler effective-
relaxation-rate theory, which is demonstrated in
Sec. IVA.

A. Uniform Mode above Threshold

Above threshold the uniform mode couples di-
rectly to a pair of z-directed spin waves k and
-k. Following Schlémann’s treatment?® of paral-
lel pumping'®''® above threshold, we assume that
as the amplitudes of k and - k grow their relaxa-
tion rate 7, increases. This is caused by nonlin-
ear processes involving destruction of magnons
kand —k. If the net effect of these simply is to
make 77, power dependent then (4) still holds but
with 7, not a constant. Schlmann took

Ne=10)(1+AT/T) (23)

where 7,(0) is the spin-wave relaxation rate below
threshold, T is the lattice and spin-wave tempera-
ture below threshold, and AT the increase in tem-
perature of the spin waves above threshold. The
increase in spin-wave temperature AT is assumed
to be proportional to P,, the energy absorbed per
sec by the spin waves:

AT/T=CB, (24)

b

where C is an appropriate constant. Now P, is
given from conservation of energy considerations
by

P,=P-P; , (25)
where P is the total power dissipated by the sys-

tem of spin waves plus uniform mode and P, is the
power dissipated by the uniform mode. We have

P=jwy "h¥« lcylh (26)
and Py=2ngfiwglcyl? . (27)

Equation (26) expresses the fact that the total en-
ergy absorbed from the driving field arises from
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coupling of the uniform mode to % since the 2 #0
modes do not couple directly. In the steady state,
the total energy absorbed is, of course, equal to
the total energy dissipated.

It is convenient to introduce normalized vari-
ables defined by

x =h/hcr1t ) (233)
y= ICol/lcolcrit ’ (28Db)

so that x and y represent, respectively, rf field
and uniform-mode amplitudes normalized to their
values on threshold. Then (24) becomes, with use
of (25)-(27),

AT/T=Cy(x-y) , (29)

where C’is a new constant. With (29) in (23) and
(4) we then have

¥2=1+Clyx-y) (30)

for the predicted dependence of uniform-mode am-
plitude on rf field (v versus x) above threshold.
Equation (30) withC =% is shown as the solid line
in Fig. 6. It is seen that the power-dependent
relaxation-rate method of Schlominn gives a good
description up to 12 dB above threshold.

We note that the measured value AH,=2n,/v
=0.510e (Sec. IITA) is in exact agreement with
the theory of Sparks, Loudon, and Kittel?® for re-
laxation of a z-directed spin wave by the three-
magnon confluence process. This strengthens our
basic premise that the initial departure from lin-
earity in Fig. 6 is due to the second-order Suhl
threshold for a homogeneous specimen, and not
caused by inhomogeneity scattering which leads to
a gradual decrease in susceptibility for legl2<n,/

ok -

B. Second Harmonic, Power Output, and Phase

As mentioned previously, the simple phase re-
lation (5) is totally inadequate for explaining sec-
ond-harmonic data. Before proceeding to analyze
phase relations in the presence of parametric cou-
pling between %k #0 spin waves, we wish to justify
an assumption used throughout: The excited spin
waves all have effective frequency @,=@Gp=w . It
is important that this be examined since if the spin
waves are not excited in resonance (&, #@,), then
one can expect departures from (5) even for a sin-
gle pair of excited magnons. The second equality,
@o=w, is always satisfied by proper adjustment of
H to ensure resonance of the uniform mode. The
symbols @, and &, are used to account for power-
dependent frequency shifts.

To discuss the above question we replace the
term n,c¢, by n,lc,—C;) in (3) where ¢, is the ther-
mal equilibrium value of ¢,. This allows ¢, to

have a finite value below threshold. Solutions of
(3) and a similar equation for ¢!, then give for
an e o’ time dependence

21 [5, 1202 g ke Bin, + i (@, — @)}
ot 201G "M ZakC g g+ 2 W, = Wo 31
=T (@, - o + T O

where random phases of ¢, and ¢, have been as-
sumed and where

M=nt— lgel®lcel® . (32)

The first term in curly brackets of (31) leads to the
phase relation (5). The term i (@, — @) causes a
departure from (5), but it is negligible for the fol-
lowing reasons. From the denominator in (31) we
see that ¢lc’, is appreciable only for |&,— &l
27,. Thus the ratio of the second to the first
term in curly brackets of (31) should not be great-
er than the order of 7,/7,. But for spin waves ex-
cited to large amplitude by parametric coupling,
Mp~ 0, and thus 7, <7, for the important spin
waves. The same point has been made by Schls-
mann® in showing that 7, is sufficiently small that
effects may be observed due to discreteness of the
spin-wave spectrum. A second reason for ignor-
ing the @, — ®, contribution to phase shift is that if
a group of spin waves centered about &,= @, is ex-
cited then the summation }, c,‘:cfk is involved. The
magnitudes of the contributions of the 71, and @,

- @, terms in curly brackets of (31) will then have
a ratio of the order of gq,/7,(9g¢,/9w,), which should
be of the order of w,/7,>1.

Having seen that nonresonant (&, #@,) excitation
of spin waves cannot account for significant depar-
tures from the simple phase relation (5), we now
examine parametric processes involving 2 #0 spin
waves. The other terms in (1) are written so as
to take explicit account of four-magnon processes
in which K and - K are converted to ¥’ and - &'
(Fig. 2). All other scattering processes are as-
sumed to be describable by effective relaxation
rates and frequency shifts. Thus (3) becomes

s e . 2 .t
Cp=—1WpCp = MpCp—1L0rC0C

-i2 L CrCpCl (33)
B'#0

where g, is the coupling constant appropriate to
the four-magnon process in Fig. 2, and g,,=0.
Since only a portion of the scattering terms has
been treated explicitly, (33) is still not exact, but
it should contain the most important parametric
terms. The reasons for sorting out the kK, —k
- K, =K’ terms as opposed to three-magnon or

k, -k’ -k’+k+4(q #- k) processes are that (a)

only processes of this type give rise to a coherent
phase between spin waves K’ and - K", and such
phase coherence is necessary in order for the pair
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to contribute to P,, (13). That is, if K’ is excited
by one scattering and -k’ by another, they will
not —at least in first approximation - contribute to

second harmonic since their phases will be random;

(b) the initial spin waves to have large amplitude are
of opposite momenta since they are excited from
the uniform mode. The next energy- and momen-
tum-conserving nonlinear process which can then
occur is one in which the initial pair scatters into
another pair since relatively large amplitudes of
the incident magnons are required. A three-mag-
non splitting process K—~E&’, K-K’ is not allowed
since we assume that the first-order Suhl process
is forbidden, and thus there are no spin waves K’
for which @, = 3w,=3 w,. Thus (33) does account
for the initial parametrlc processes properly.

We assume an e’ 0! time dependence and @,= @,
for all spin waves, as discussed previously.
Steady-state solution to (33) then yields, similar
to (5),

%
C;c.’zzi (%fk C%z”'ZI gkk'ck:c_k:) 'Cklz . (34)
If a phase angle &, is defined by

cicl =ilc,1Bc®e'®/|c,l? (35)

then (34) becomes

eit-8 lc l2+— 27 gkley et | (36)
Me 40
The relation (13) for M,(2w) is
2 ,id,
M 20)=Bagr (1. 5 Ei—ﬂ—) (37)
2w, rto  lcol

Thus an expression is needed for Ic,|%¢*®* summed
over the excited spin waves. For the sake of ob-
taining a solution we assume that s 0g:% ey 12/
is independent of K. This can be reasonable well
above threshold when many spin waves should be
excited. However, it is of questionable validity
immediately above threshold where only one spin-
wave pair has large amplitude. With this assump-
tion (36) then gives

> leyl2ei% = Z)gf’k legl?lcyl?

R#0 r'#0 e’

-1
><<1—i E-g’*—k’lck,lz) . (38)
r#0 et

The above shows that as the number of excited spin
waves increases the net phase of the spin waves
with respect to the uniform mode is such as to in-
troduce a component which interferes destructively
with &% in the contribution to Py, (for g.¥and g
of the same sign). This confirms the physical pic-
ture discussed in connection with Fig. 3.

The next step is to obtain an expression for
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Yesolc,!®. The groundwork for this has been laid
in Egs. (25)-(27), which give power absorbed and
dissipated by the 2 #0 spin waves and the uniform
mode. Since we assume w,= w, for all excited spin
waves, the expression for the spin-wave energy
dissipated per sec is, analogous to (27),

Po=20wy 25 nulc,l? . (39)
E#0
Use of (26), (27), and (39) then gives

27 le,12=

o <k>'¢o 2ty (x =) (40)

in terms of the normalized variables x and y (28).
The quantity (7,) represents an average of 7, over
the excited spin waves:

(M) =20 Mplepl?/ 27 legl? . (41)
k%0 R#0

With (40) and (38) in (37), we then get

- avy*(x ~y)* uy(x -y)
M,(2w) yz[ 1+a%%(x -9 " 14 a%?(x - y)z]
: (42)
where a@={(g&/n,)Mo/{M)) lcgl%s (43a)
v=Agow/Me) Mo/ (M) leo 2t (43b)

with averages () defined as in (41) with respect to
the distribution of excited spin waves.

The effect of coupling between & #0 spin waves,
expressed by @, is seen to reduce [M,(2w)} both
by adding a component 180° out of phase with c
[second term in (42)] and by reducing the 90° com-
ponent [third term in (42)]. With a=0 (42) reduces
to (14).

The second-harmonic phase & (22) has its tan-
gent given by the ratio of the imaginary to the real
parts of the expression in brackets of (42). For
v>a, it is possible to have &, >90° sufficiently far
above threshold, in agreement with experiment
(Fig. 8).

Equation (42) has been compared with experi-
ment by treating @ and v as adjustable parameters
which are uniquely determined by P,, and ®,. The
quantities x and y are taken from the data of Fig.
6. It is reasonable to expect a and v to decrease

FIG. 11. Dependence
of parameters o and v
[Eq. (43)] upon square of
driving field. Solid curves
of Figs. 7 and 8 are ob-
tained from this figure
and Eq. (42).
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with increasing power well above threshold. This
is because 7, must be regarded as an effective re-
laxation rate into which all nonlinear processes
other than the K, -K~K’, —K' ones are lumped.
Also {go/M,) can be expected to decrease even for
constant 7, as spin waves are excited which couple
more weakly to the uniform mode than the initial
pair. Thus we have attempted to fit the data of
Figs. 7 and 8 (20° orientation only for Fig. 7) with
values of @ and v which are not allowed to increase
with 2. The resulting @ and v are shown in Fig.
11, and the theoretical curves are the solid ones
in Figs. 7 and 8. Above the region where @ and v
are constant, the points in Fig. 11 correspond to
the values required to obtain exact agreement. At
lower powers v must increase with % in order to
get perfect agreement. Use of a constant in this
range has a negligible effect on B, but does pro-
duce as much as 20% error in &,,as seen. It is
noteworthy that with @ and v decreasing functions
of 2 it is possible to describe the maximum in P,
at about 15 dB above threshold.

The values of a and v used in the constant region
of Fig. 11 are 1.5 and 1.4, respectively. They
can be estimated theoretically from the experimen-
tal measurements of AH, and AH,. Since 1,/gq
= lcg 2,;¢ on threshold, we should have v=17,/7,
=0.75. The quantity g,. is!* approximately equal
to gg, for K and z-directed spin wave, so we should
expect @ ®y. Hence there is about a factor of 2
discrepancy between the predicted a and v and the
ones given in Fig. 8. This, together with the fact
that v must increase initially in order to reproduce
the phase shift, is perhaps indicative of the weak-
ness of our assumptions immediately above thresh-
old, as discussed prior to Eq. (38). We also
point out, though, that since (21) AH,/AH, is pro-
portional to h2/A Hy, 10% errors in the measure-
ment of AH, and %, could alter the ratio AH,/AH,
by a factor of 1.7, so the factor of 2 error in @
and v may not be too serious.

Equation (42) differs slightly from a previous
version.? In the earlier work we treated &, as
independent of K and solved (36) for tan®,. This
leads to an inconsistency which was not appreciated
at the time. Phase-shift measurements had not yet
been performed then, so the unique determination
of @ and v was not possible.

C. Second-Harmonic Line Profile

The structured Py, line shapes of Fig. 9 may be
understood in terms of the dependence of P,, ver-
sus % on resonance (Fig. 7). To do this we make
the following assumption: The power output at any
dc field H depends only on the uniform-mode am-
plitude. That is, for a given value of Ic,l%, P,, is
the same whether this value is attained on reso-

nance (H=H,) or off resonance (H #H,). Justifica-
tions for this assumption are that (a) the ellipticity
of the modes, which gives rise to second harmonic,
is independent of H — H because it is governed by
the natural elliptical precession of the mode (Ayu.q
#0). A case for which ellipticity does depend on

H - H, occurs for Ayity=0. Then the natural pre-
cession is circular, and second-harmonic genera-
tion is possible only by excitation of both the res-
sonant and counter-rotating senses of circular po-
larization. As long as A\l > AHy/H,, effects of
the counter-rotating component on P,, may be ne-
glected. For YIG with H in the (111) plane, this
condition is well satisfied. (b) Nonlinear excita-
tion of spin waves takes place by coupling to the
uniform mode rather than the driving field. Thus,
for example, Eq. (33) involves only cZ, and no
mention need be made of whether or not the uniform
mode is on resonance.

Consider then one of the curves in Fig. 7, which
gives P,, versus u® for H adjusted to resonance.
This can readily be converted to P, versus y?
(28a) by use of Fig. 6. The general shape of P,,
versus y? is the same as P,, versus %2 since y is
an increasing function of 2. Now as H is varied
off resonance y decreases. To be specific, we
take a Lorentzian

yE=y5[1+4(H -H)?/AH)? (44)

where y, is the value of y on resonance. The load-
ed linewidth A H; is used since H is varied at con-
stant driving field &, (see Sec. IIE.). As y de-
creases from y, to zero, P,, then assumes in suc-
cession all values on the curve P,, versus y2 for

y <yo. Thus, for example, if we are at the mini-
mum in P,, (about 10 dB above threshold) with H
on resonance, then as H is moved off resonance
P,, increases since decrease in y means an in-
crease in P, in this region. A maximum in P,
versus H occurs for y 1 as can be seen from Fig.
7. Also it is evident that for %% above the value

at the minimum in P,,, there will be a local maxi-
mum in P,, on resonance while for %% less than
that required for the minimum, P,, will go through
a minimum on resonance.

Quantitative line shapes P, (H) are readily ob-

tained from Figs. 6 and 7 and Eq. (44). Thus we
have

Py(H) =Py, x[y(E@)]} (45)

indicating that P, is a function of driving field x
(28a) which is a function of uniform-mode amplitude
9y which is in turn a function of dc field H. The re-
sulting curves in Fig. 9 are seen to agree well
with experiment.
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D. Pulse Shapes
1. Tvansient Decay

Keys to behavior of the second-harmonic pulse
after the incident fundamental power has been
turned off are the vector diagrams of Fig. 12 and
the fact that the uniform mode decays much more
rapidly than the 2 #0 spin waves due to radiation
damping. The spin-wave contribution to P,,, 5,
xglet, is divided into components 90° and 180° out
of phase with &{. Figure 12(a) is for the 180°
component kg, less than |cyl? in the steady state.
In this case, |M,(2w)| decreases during the rapid
decay of the uniform mode, as long as lcgl2>kg.
After |co!% has decayed to the level kg, |M,(20)I
increases until such time as relaxation of the kg,
and % ;40 components becomes important. This
situation corresponds to the trace in Fig. 10(d).

Figure 12(b) is for k4, greater than |cy!? in the
steady state. Then |M,(2w)!| initially increases
as lcgl? decreases. Figures 10(b) and 10(c) show
the experimental decays for this case.

2. Approach to Steady State

In an effort to reproduce the pulse shapes of
Fig. 10 in the region before steady-state values
are reached, we have obtained numerical solutions

t=0

0
# M, (2)
—Kgo
t=t
01 Kigo
t= t2
M, (2
Kigo Kigo 2 )
IM_(24)]

(a)

ot t2
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to the coupled nonlinear Eqs. (33) and the uniform-
mode equation

° . < NN » -3
Go==1woCo=T0oCo~1 21y & CrCpCl—iFe w0t >

(46)

where F is a driving term proportional to 2. As
many as three pairs of excited spin waves k, - k;
k', -k, and k", =k’ have been considered. Fre-
quencies @, and relaxation rates 7, are held con-
stant during the calculation.

Spin-wave buildup cannot occur unless the ini-
tial % #0 amplitudes are nonzero. It is possible to
rewrite (33) and the similar equation for ¢, as
coupled equations for the quantities ¢,c_,, c;cfk s
and lc,l%=lc_,1%. The advantage of this is that
separate initial conditions can be placed on Ic,|?
and c,c_,. We have taken c,c.,=0, lc,|?
=0.1lcq %y, for all £ #0 and co= lcy| =0 as initial
conditions. These allow for random phases at
t=0 and let the spin waves build up in a fairly
short period of time. Since we are primarily in-
terested in the shape of the pulse rather than ab-
solute buildup times, the initial value of Ic,|? is
not overly important.

Harker and Shaw?® have also obtained computer
solutions for spin-wave buildup and reaction back

FIG. 12, Phasor diagrams for explanation of transient decay of second-harmonic pulse. O, kgg, kig are, respec-
tively, contribution to M,(2w) of uniform mode, spin waves 90° out of phase with cgz, and spin waves 180° out of phase
with cf?.  (a) kyg0< Ic}|? in steady state, (b) k5> Ic}I? in steady state. Incident power is turned off at £=0, and uniform
mode decays rapidly owing to radiation damping. Uniform-mode amplitude has become negligible in time ty in (a) and

ti in (b) .
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on the uniform mode. They performed integrations
over k space and thus included all spin waves which
interact with the uniform mode, but they did not
consider interactions among 2 #0 spin waves as
we do. That is, they solved Egs. (3) and (46).
Interaction terms g4+, of course, complicate mat-
ters considerably and restrict us to a small num-
ber of spin-wave pairs.

Results are shown in Fig. 13 for two and three
pairs of excited spin waves. Parameters are
given in the figure caption. The initial spikes
agree with experiment quite well. These occur
because the uniform mode can build up to a great-
er-than-steady-state value before the limiting ef-
fects of spin waves are manifested. Transient de-
cays also are satisfactorily reproduced.

The main feature we had hoped to explain, how-
ever, is the pronounced second peak on the har-
monic pulse [Fig. 10 (c)] which occurs after the
transverse magnetization appears to have reached
steady state. Comparison of Fig. 13 with Fig. 10
(c) shows that we have not had much success in
this regard. We do note, though, that the curve
with three spin-wave pairs shows a much longer
decay of the second peak than does the one for two
spin-wave pairs. This is a step in the right direc-
tion, and perhaps a model with many more inter-
acting pairs can reproduce the experimental re-
sults. Computer time for such a calculation is
likely to be prohibitive, however. Twelve minutes
on a GE-625 were required for two spin-wave
pairs, and 20 min for three pairs.

E. Spin-Wave Contribution to P from Transient Decay

In our previous work!?'?? we felt that the steady-
state spin-wave contribution to P,,, proportional to
I x#0€1E ], 12, could be estimated by extrapolating
the long-time behavior of the P, transient back
to the time at which the incident pulse is turned
off. The values thus obtained were, however, con-
siderably greater than given by theory (see Fig. 2
of Ref. 22).

The reason for this discrepancy is probably that
initially after the incident pulse is turned off the
spin waves decay at a rate slower than 7, because
of energy supplied from the uniform mode. Not
until the uniform-mode amplitude has decayed well
below the threshold value can we expect the spin-
wave contribution to P,, to show an e ™! depen-
dence. Thus if the long-time portion of P,,, which
does go as e ™!, is extrapolated back to ¢ =0 (time
at which incident pulse is turned off) the resulting
extrapolation will be greater than the true value
att =0.

V. SUMMARY AND CONCLUSIONS

Measurements of second-harmonic power output
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have been performed above the second-order Suhl
threshold. These show several interesting fea-
tures. The steady-state power output goes through
a minimum and then a maximum as incident power
is increased above threshold. Dependence of P,,
upon dc field H shows two and then three peaks.
After the pulse of incident power is turned off, P,,
initially increases. None of these curiosities is
reflected in the uniform-mode behavior. The
transverse magnetization always increases above
threshold, shows only a single peak versus H, and
decays normally.

Parametric coupling between the initial spin
waves which go unstable and other 2 #0 spin waves
can explain the above effects. This coupling im-
plies phase relations such that the second group of
excited spin waves contributes to P,, 180° out of
phase with the uniform mode. On the other hand,
if all 2 #0 magnon-magnon interactions are lumped
into effective relaxation rates, all spin waves
would contribute to P,, 90° out of phase with the
uniform mode, and none of the observed anomalies
would result.

We conclude that our experiments give striking
evidence of the fact that the same type Suhl pro-
cesses which limit uniform-mode growth also oc-
cur for the spin waves which are excited by the
uniform mode. This coupling produces coherent
phase relations which can be inferred from study

pulse height @rbitrary units)

FIG. 13. Computer solutions for transverse magneti-
zation and second-harmonic pulses. Driving field cor-
responds to 14 dB above threshold. Solid curves P,,,
dashed curves |M,(w)|2. Curves are normalized to
steagy—stﬁte values. (a) For two spin-wave pairs k, —k
and k', —k’ excited; n¢/n,=0.8, Mpe/Np=0.5, go* /g0 =0.5,
Suet /80, =0.8. (b) For three spin-wave pairs k, -k,

k' —%’, and k", —k" excited; 1/n,=0.8, M/M,=0.5,
Men/Me=0.4, Z0or/80r=0.5, Eorr» =0, Zurp/8or=Eret*/Ewn
=0.2, gut/8r=0.7.
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of harmonic generation. Analysis of the trans-
verse resonance alone does not reveal the pres-
ence of these phase relations between 2 #0 modes;
so the usefulness of harmonic generation as a re-
search tool is established.

Agreement between theory and experiment is
satisfactory in most aspects. The strong second
peak on the P,, pulse has not been adequately ex-
plained, however. This is an interesting effect
since it shows that relatively large harmonic pow-
er outputs are possible on the front part of the
pulse and for times longer than required for the
transverse magnetization to reach its steady-state
level. There are indications that inclusion of
many spin-wave pairs in a numerical calculation
may reproduce the observed pulse shape. This is
based on the fact that three spin-wave pairs gives
a better qualitative picture than two pairs. A sec-
ond point is that the assumption of azimuthal in-
dependence of c¢,c-,, whereby one goes from (9)
and (11a) to (13) may not hold, at least during the
transient buildup. If, for example, spin waves
with 6, =27 and one definite ¢, were to be excited,
they could make a very large contribution to
P, (w;~30B, for YIG) without having a drastic ef-
fect on the transverse magnetization. Crystalline
anisotropy does introduce ¢, dependence; so such
a situation could be possible.

The effective-relaxation-rate treatment (Sec.

IV A) does reproduce the transverse magnetization
quite well whereas we know from the harmonic-gen-
eration data that this theory cannot be correct.
Such agreement must therefore be regarded as
fortuitous. Ideally the dependence of uniform-
mode amplitude upon driving field should be ob-
tained from (33) and (46) with the same param-
eters as required to fit the harmonic-generation
data. In this way we would have a completely con-
sistent theory. On resonance, (35) and (46) yield

v =xn(0)/Tip (47)

where 17,(0) is the uniform-mode-relaxation rate
below threshold and

flo="0+2s &k lc,1?cosd, . (48)
k%0

This involves an average of gy, cos®, over the
distribution of excited spin waves while the aver-
age of cos®, itself is needed for P,,. Also 7y may
be power dependent since it depends on the spin-
wave temperature. Thus two new parameters,
depending upon variation of 1y and (g, with pow-
er, are required; so it is not possible to predict
uniform-mode behavior from the quantities o and
v alone which are needed for the P,, data.

We have attempted!* fitting the transverse mag-
netization data with a two—spin-wave-pair model,

D. BIERLEIN AND P. M. RICHARDS 1

but the results are not nearly as good as those ob-
tained from Eq. (30). Thus the effective-relaxa-
tion-rate description of the uniform mode above
resonance is useful if not correct.
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APPENDIX: SUHL FIRST-ORDER PROCESS

The uniform-mode amplitude stays constant
above threshold when the Suhl first-order process
is allowed on resonance. !'>* To our knowledge
there are no exceptions to this reported in the lit-
erature, and we have verified the behavior with
experiments on our YIG spheres between 1. 86 and
2.1 GHz (frequency must be less than 3. 3 GHz for
the process to be allowed on resonance in a YIG
sphere at room temperature).

Why there is “sticking” for the first-order, but
not for the second-order process, may be under-
stood either in terms of the effective-relaxation
rate model or explicit consideration of the para-
metric processes. Consider first the effective-
relaxation-rate picture. We assume Egs. (23) and
(24) to hold for the first-order process with rough-
ly the same value of C. Then since the critical
value of |cyl? for the first-order process is less
than that for the second-order process by a factor
of the order of 17,/ w, <1, (26) and (27) show that
the corresponding change AT in spin-wave tem-
perature is much less for the first-order process.
That is, much less power is involved in the first-
order process; so there is not sufficient heating
of the spin-wave system to cause 7, to change ap-
preciably.

What about the initially excited spin waves being
limited by parametric processes? Here we note
that for the first-order process the first spin
waves to go unstable have’® 6,= {7. Intheabsence
of anisotropy they will be excited equally in all azi-
muthal directions; so no one pair can acquire large
amplitude as required for the parametric limiting.
With the inclusion of cubic anisotropy, Schldmann’
has shown that azimuthal invariance is preserved
for H in a (100) direction, but the coupling does
vary with ¢, for H in the [111] direction. Even in
this latter case, though, there are still six direc-
tions where the coupling constant has the same
maximum value. Hence the amplitude |c,|? for
each direction is } what it would be if only one
pair were excited; so it is difficult for sufficiently



large spin-wave amplitudes to be attained. Also,
the next spin waves excited do not have total mo-
mentum of zero, since they are produced by de-
struction of a single magnon k. Thus energy can-
not be coupled into them from the uniform mode.
For the second-order process, the first spin
waves to go unstable are z directed. There is only
one pair, so a large spin-wave amplitude can re-
sult. The next pair ﬁ', -k’ to be excited can ab-
sorb energy from the uniform mode as long as
£orr 70, and this aids in maintaining the excitation.
These considerations show why the initially ex-
cited spin waves are not likely to be limited by
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parametric processes when the Suhl first-order
process is involved while such limiting does occur
for the second-order process.

A final note is that for the initially excited spin
wave to undergo a first-order parametric process
one requires the existence of spin waves for which
W= iwo. For a YIG sphere at room temperature,
this means the frequency must be less than 2, 2
GHz. For this reason, we operated at 2.1 GHz
and below. A null result at these frequencies
showed, consistent with the above, that these pro-
cesses do not in fact occur even when allowed by
conservation of energy.
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(d)

FIG. 10. Second-harmonic and transverse magnetiza-
tion pulse shapes (a) 6 dB above threshold, 1 psec/cm;
(b) 9.6 dB above threshold, 1 usec/cm; (c) 14 dB above
threshold, 1 psec/cm; (d) 8 dB above threshold, 50
nsec/cm. In (a)—(c) the upper trace is second-harmonic
(if envelope) and the lower trace transverse magnetiza-
tion. In (d) the lower trace is second-harmonic (straight
video detection) and the upper trace transverse mag-
netization.



